Name:		
	last	first

- 1. 30 pts _____
- 2. 20 pts _____
- 3. 20 pts _____
- 4. 15 pts _____
- 5. 20 pts _____

TOTAL: _____

- 1. For each of the following questions only <u>one answer is correct</u>. Write the number corresponding to the correct answer in the space provided. (3 points each)
- (a) Calculate the formal oxidation number of carbons in the following molecule:

HO-CH₂CH₂-OH

$$(1)$$
 -3, (2) -2, (3) -1, (4) 0, (5) +1

(a) $\frac{3}{}$

(b) Which reagent is not suitable for the synthesis of this compound?

(b) $\frac{3}{}$

(c) What would be the oxidant of choice in this reaction?

$$\begin{array}{c}
CN \\
\nearrow \\
N
\end{array}$$

(1) oxalyl chloride, DMSO, (2) PCC, (3) MnO₂, (4) RuO₄, (5) NalO₄

(c) ⁴

(d) In which oxidative rearrangement an isocyanite cannot be isolated?

(d) 1

(e) Which oxidant is not suitable for this reaction?

(1) NaOH/ H_2O_2 , (2) m-CPBA, (3) diacetone diperoxide, (4) NaOH/t-BuOOH

(e)<u>2</u>____

(f) Which diol will undergo an oxidative cleavage with KIO₄ to form benzaldehyde at a faster rate?

OH OH OH Ph
$$(1)$$
 Ph (2) Ph OH (3) Ph (4) (4) (4) (4) (5) (4) (5) (5) (5) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (8) (9)

(g) Which reagent cannot be used for transfer hydrogenation?

(1) 2-propanol, (2) cyclohexanol, (3) HCO₂NH₄, H₂O, (4) HCO₂Na, H₂O, (5) methanol

(g) <u>5</u>

(h) The most active transition metal for catalytic hydrogenation with H₂ is:

(1) Ni, (2) Rh, (3) Ru, (4) Pt, (5) Pd

(h) 4

(i) What will be the major product of this reaction?

(1)
$$CO_2Et$$
 CO_2Et CO_2ET

(j) What would be the reductant of choice in this reaction?

2. Complete the following synthesis (12 pts) and write a mechanism for the second step (B–D) (8 pts).

OH
$$A \qquad C \qquad E$$

$$\longrightarrow \quad D \text{ (ester)} \longrightarrow \quad CH_3COOH + \text{benzene}$$

3. Complete the following synthesis (12 pts) and write a mechanism for the last step (8 pts).

$$CH_3$$
 CH_2OH
 $COOH$
 $COOH$

mixture of two (ratio 1:1)

4. Complete the following synthesis (15 points).

5. Complete the following synthesis (12 pts) and write a mechanism for the last step (8 pts).

A hint: Use TsNHNH₂ at a certain step.