CHEM-6430
Advanced Synthesis
Exam 3-105 points
March 28, 2024

Name: \qquad
first

1. 30 pts
2. 20 pts
3. 20 pts
4. 15 pts
5. 20 pts

TOTAL:

1. For each of the following questions only one answer is correct. Write the number corresponding to the correct answer in the space provided. (3 points each)
(a) Calculate the formal oxidation number of carbons in the following molecule: $\mathrm{HO}-\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{OH}$
(1) -3 , (2) -2 , (3) $-1,(4) 0,(5)+1$
(a) 3
(b) Which reagent is not suitable for the synthesis of this compound?

(1) $\mathrm{KMnO}_{4} / \mathrm{NaOH}\left(\right.$ aq.), (2) OsO_{4}, (3) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{H}_{2} \mathrm{SO}_{4}$, (4) $\mathrm{Mg}(\mathrm{Hg})$
(b) 3
(c) What would be the oxidant of choice in this reaction?

(1) oxalyl chloride, DMSO, (2) PCC, (3) MnO_{2}, (4) RuO_{4}, (5) NaIO_{4}
(c) 4
(d) In which oxidative rearrangement an isocyanite cannot be isolated?
(1) Hofmann, (2) Curtius, (3) Lossen
(d) 1
(e) Which oxidant is not suitable for this reaction?

(1) $\mathrm{NaOH} / \mathrm{H}_{2} \mathrm{O}_{2}$, (2) m-CPBA, (3) diacetone diperoxide, (4) $\mathrm{NaOH} / t-\mathrm{BuOOH}$
(e) 2
(f) Which diol will undergo an oxidative cleavage with KIO_{4} to form benzaldehyde at a faster rate?
(1)

(2)

(3)

(f) 1
(g) Which reagent cannot be used for transfer hydrogenation?
(1) 2-propanol, (2) cyclohexanol, (3) $\mathrm{HCO}_{2} \mathrm{NH}_{4}, \mathrm{H}_{2} \mathrm{O}$, (4) $\mathrm{HCO}_{2} \mathrm{Na}, \mathrm{H}_{2} \mathrm{O}$, (5) methanol
$(\mathrm{g}) \underline{5}$
(h) The most active transition metal for catalytic hydrogenation with H_{2} is:
(1) Ni, (2) Rh, (3) Ru, (4) Pt, (5) Pd
(h) 4
(i) What will be the major product of this reaction?

(1)

(2)

(3)

(4)

(i) 1
(j) What would be the reductant of choice in this reaction?

(1) LiAlH_{4}, (2) $\mathrm{NaBH}_{3} \mathrm{CN}$, (3) BH_{3} THF, (4) DIBAL-H, (5) $\mathrm{H}_{2} / \mathrm{Pd}$
2. Complete the following synthesis (12 pts) and write a mechanism for the second step (B-D) (8 pts).

3. Complete the following synthesis (12 pts) and write a mechanism for the last step (8 pts).

4. Complete the following synthesis (15 points).
ethyl acetate $\longrightarrow \longrightarrow$ butyraldehyde

5. Complete the following synthesis (12 pts) and write a mechanism for the last step (8 pts).

A hint: Use TsNHNH_{2} at a certain step.
A: MeMgBr ;
B:

C: $\mathrm{CrO}_{3} / \mathrm{H}^{+}$

E: TsNHNH_{2}
F:

NNHTs

