Chapter 15

Figure 15.1

The three critical determinants of a synthesis

Synthetic targets of theoretical interest

- highly strained and energetic molecules: cyclobutadiene and Ladenburg benzene (prismane)
- Platonic solid hydrocarbons: tetrahedrane, cubane and dodecahedrane
- Stable carbenes: *N*-heterocyclic carbenes

Elegance or, "What constitutes a good organic synthesis?"

- Generally agreed features of an elegant synthesis
 - regiochemical control
 - stereochemical control
- Hendrickson definition of an "ideal synthesis" (1975):
 - A synthesis which: "...creates a complex molecule...in a sequence of only construction reactions involving no intermediary refunctionalizations, and leading directly to the target, not only its skeleton but also its correctly placed functionality."
- Atom economy (Trost, 1991):
 - the major goal is to minimize the number of atoms in the reactants that do not end up in the final product
 - dramatically affected by the advent of transition metal-catalyzed synthetic reactions
- Step economy (Wender, 1997):
 - every step in a synthesis costs time, money, and effort, and every step of a synthesis has an economic and environmental impact.
 - reducing the number of steps in a synthesis is critically important.
- Redox economy (Baran, 2010):

- % ideality =
$$100 \left[\frac{(\# \text{ of construction rxns}) + (\# \text{ of strategic redox rxns})}{(\text{total } \# \text{ of steps})} \right]$$

Figure 15.2

The relationship between target complexity and step economy over time

Modified Bertz fragment complexity indexes (N)

Calculating Bertz complexity indexes

- Complexity index, $C_c = (2N \ln N)$.
 - N =sum of fragment indexes
- $C_c = (2N \ln N n_s \ln n_s).$
 - n_s = number of pairs of atoms related by the symmetry of the molecule
- heteroatom coefficient, $H = n_h + 1$
- n_h = number of heteroatoms
- Heteroatom complexity index, $C_h = (2H \ln H h_s \ln h_s)$
 - $-h_s$ = number of heteroatom pairs related by molecular symmetry
- Total complexity index, $C_{tot} = C_c + C_h$

Figure 15.4

Complexity indexes for some common reactions

Organic reactions in synthesis

- How we learn reactions first
 A + B → C
- Different ways to look at a particular $A + B \rightarrow ?$ [Answer: C] $A + P \rightarrow P$ [Answer: C] $A + P \rightarrow P$ [Answer: B] reaction $P + B \rightarrow P$ [Answer: A]

The question posed ?+?→c
by synthesis

A specific example

How we first learn the reaction

 Different ways to look at this particular reaction

 The question posed by this reaction in synthesis

Figure 15.5

The rise of sophistication in organic synthesis

ENANTIOSELECTIVITY Reaction gives a single enantiomer, or a product highly enriched in one enantiomer, from an achiral precursor

MODERN SYNTHETIC REACTIONS

1980s

DIASTEREOSELECTIVITY

Reaction gives the product as a single diastereoisomer, or a mixture highly enriched in one diastereoisomer. Product from an achiral precursor will be racemic.

1900s

REGIOSELECTIVITY

Reaction gives the product as a single regioisomer, or as a mixtures highly enriched in one regioisomer

1870s

CHEMOSELECTIVITY

Reagent reacts predominantly, but not always exclusively, with one functional group in the molecule

EARLY SYNTHETIC REACTIONS

Table 15.1

- The reactions in this table are grouped according to the number and type of bonds involved into the following categories:
 - one-bond C—C bond-forming reactions
 - one-bond C—X bond-forming reactions
 - multibond reactions
 - oxidation and reduction reactions
 - rearrangement reactions

Table 15.1 A: One-bond (C—C) reactions

Grignard addition

Wittig reaction (X=PR₃); McMurry reaction (X=O) ozonolysis; Lemieux-Johnson cleavage, etc.

Friedel-Crafts acylation Gattermann-Koch formylation Vilsmeier-Haack formylation

aldol addition; Bayliss-Hillman reaction; etc. retro-aldol fragmentation

aldol condensation

alkylation of enclates

Table 15.1 B: One-bond (C—C) reactions

alkylation of alkynides

Michael addition

Claisen condensation retro-Claisen fragmentation

pinacol reaction glycol cleavage

Heck coupling (X=halogen; Y=H) Suzuki coupling (X=halogen; Y=B(OR₂))

Sonogashira coupling

Table 15.1 C: One-bond (C—X) reactions

Table 15.1 D: Multibond reactions

acetal/thioacetal/ketal formation acetal/thioacetal/ketal hydrolysis

electrophililc addition of HX base-promoted elimination (E1, E2, E1cb)

electrophililc addition of XY, hydroxylation, etc. reductive elimination

alkene metathesis

Wittig/McMurry reactions ozonolysis, Lemieux-Johnson oxidation, etc.

Table 15.1 E: Multibond reactions

cyclopropanation (Simmons-Smith, etc.)

epoxidation

Darzens condensation; sulfur ylide addition, etc.

[2+2] cycloaddition

[4+2] cycloaddition (Diels-Alder reaction)

Table 15.1 F: Oxidation and reduction reactions

hydrogenation dehydrogenation

epoxidation

addition of halogens; hydroxylation, etc. reductive elimination

reduction of carbonyl compounds oxidation of alcohols

α-halogenation, sulfenylation, sulfonation, etc. hydrogenolysis of α-halocarbonyl compounds, etc.

allylic halogenation, oxidation, etc. allylic hydrogenolysis

Table 15.1 G: Oxidation and reduction reactions

acyloin condensation

McMurry reaction ozonolysis; Lemieux-Johnson oxidation

pinacol reduction periodate oxidation

Wolff-Kishner, Clemmensen or related reductions

Birch reduction

nitration, halogenation, etc. of aromatic rings

Table 15.1 H: Rearrangement reactions

Wagner-Meerwein rearrangement of cations

pinacol rearrangement

Favorskii rearrangement

Hofmann, Curtius, Lossen rearrangements

Baeyer-Villiger rearrangement (X=O; Y=O) Beckmann rearrangement (X=NOH; Y=NH) Schmidt reaction (X=O; Y=NH)

Cope (X=CR₂) and Claisen (X=O) rearrangements other sigmatropic rrearrangements

electrocyclization

Table 15.2

- The reactions in this table are are grouped according to their stereochemistry into the following categories:
 - suprafacial (syn) additions
 - antarafacial (anti) additions
 - eliminations
 - reactions with retention of configuration
 - reactions with inversion of configuration

Table 15.2 A: Stereocontrolled reactions—suprafacial additions (1)

Table 15.2: Stereocontrolled reactions—suprafacial additions (2)

Table 15.2 C: Stereocontrolled reactions—antarafacial additions

Table 15.2 D: Stereocontrolled reactions—eliminations

Table 15.2 E: Stereocontrolled reactions—retention of configuration

Table 15.2 F: Stereocontrolled reactions—inversion of configuration

S_N2 substitution; X=halogen, sulfonate Mitsunobu reaction (X=OH)

epoxide ring opening

hydrogenolysis over Pd

Figure 15.6

- Comparing reactions and transforms
 - reactions describe real events
 - transforms describe conjectural possibilities

Alternative synthons for 3-ethylcyclohexanone.

Figure 15.8

A retrosynthetic tree

Figure 15.9

Comparing linear and convergent syntheses

Table 15.3 A

Bond disconnection (DIS) transforms

retro-Grignard addition retro-alkynide anion addition

retro-Wittig transform retro-McMurry transform

retro-acylation retro-formylation

retro-aldol transform retro-Reformatskii transform

retro-aldol condensation transform

retro-alkylation of enolate

retro-alkylation of alkynide anion

retro-alkylation of nitro compounds (E=NO₂), sulfoxides (E=SOR), dithianes (E=(SR)₂, etc.

retro-Michael addition transform

Table 15.3 B

Bond disconnection (DIS) transforms

Table 15.3 C: Fuctional Group Interchange (FGI) transforms

Table 15.3 D: Fuctional Group Interchange (FGI) transforms

Table 15.3 E: Fuctional Group Removal (FGR) transforms

Ý^H ⇒

retro-nitration. halogenation, etc.

selenylation, etc.

sulfenylation.

retro-α-halogenation.

retro-Hofmann-Löffler-Freytag reaction: retro-Barton reaction, etc.

retro-nitrene insertion
Table 15.3 F: Fuctional Group Addition(FGA) transforms

Table 15.3 F: Rearrangement (REARR) transforms

Table 15.3 G: Ring Disconnection (DIS) transforms

Table 15.3 G: Ring Reconnection (REC) transforms

Table 15.4 A

Fuhrhop-Penzlin designation of synthons (1)

Table 15.4 B

Fuhrhop-Penzlin designation of synthons (2)

Fuhrhop-Penzlin disconnections

Disconnections reveal **a** and **d** synthons

- the *a* synthon may be a *R* synthon
- the *d* synthon may be a *R* synthon

Consonant and dissonant molecules

Dissonalt difunctional relationship is enclosed in the red highlight box

FGA transforms applied to the twistane target molecule.

 Possible DIS transforms of the first-generation synthon 15.14

One compound that can act as synthon **15.29**

The decalin must be *cis* fused or the required ring closure cannot happen.

The reactive conformation is shown in red.

Retrosynthesis of synthon **15.29**

39. Gauthier, J.; Deslongchamps, P. Can. J. Chem. 1967, 45, 297.

Synthesis of the key intermediate **15.31** for cyclization to the twistane ring system.

Completion of the synthesis of twistane

 proton a is sterically more accessible to the base than proton
b, so its abstraction is favored kinetically

Chemoselectivity

These three different alcohols can be distinguished by acetylation with acetic anhydride in pyridine

- primary alcohols react rapidly with this reagent
- secondary alcohols react at a moderate rate with this reagent
- tertiary alcohols do not react with this reagent

Orthogonality in protection of functional groups

 Note how it is possible to remove just one, or a select set of protecting groups

Figure 15.17 A

The reaction of a prochiral substrate with an achiral reagent proceeds through enantiomeric transition states of equal energy, and gives a racemic product; the same reaction in a chiral environment (e.g. with a chiral reagent, or in the presence of a chiral catalyst) proceeds through diastereoisomeric transition states of different energy, and thus gives a product enriched in one enantiomer.

Figure 15.17 B

The reaction of a prochiral substrate in a chiral environment (e.g. with a chiral reagent, or in the presence of a chiral catalyst) proceeds through diastereoisomeric transition states of different energy, and thus gives a product enriched in one enantiomer.

Protecting groups for alcohols

Class		Examples
esters		-OAc, -OCOPh, -OCOBut, -OCOCH2CCl3 (Troc),-OCO2But (Boc), -OCO2CH2Ph (Cbz),-OCO2CH2CH(o -C ₆ H ₄) ₂ (Fmoc)
ethers		—OMe, —OCH ₂ Ph, —OCH ₂ C ₆ H ₄ OMe (PMB), —OCPh ₃ (Tr)
acetals ketals	and	—OCH ₂ OMe (MOM), —OCH ₂ OCH ₂ CH ₂ OMe (MEM), —OCH(Me)OEt, —OCMe ₂ OMe (MOP), —O(C ₅ H ₉ O) (THP), —OCH ₂ OCH ₂ CH ₂ SiMe ₃ (SEM)

Conditions for removing protecting groups from alcohols

Class		Conditions
esters		KOH, H_2O (base hydrolysis); HCl, H_2O (acid hydrolysis); LiAl H_4 , Et ₂ O (reduction); H_2 , Pd-C (Cbz esters)
ethers		BBr ₃ , CH ₂ Cl ₂ ; TiCl ₄ , CH ₂ Cl ₂ , –78°C; Ce ⁴⁺ , EtOH (PMB ethers); H ₂ , Pd-C (benzyl ethers)
acetals ketals	and	H_2SO_4 , H_2O , THF; Bu_4NF , THF (SEM)

pivalate esters are highly hindered, and resist standard hydrolysis conditions

Representative conditions for the removal of ester protecting groups

	KOH, H ₂ O	RNH ₂	H ₂ SO ₄ , H ₂ O	LiEt₃BH, THF	H ₂ , Pd-C	TFA
R—OAc	R—OH	R—OH	R—OH	R—OH	-	_
R—OCOPh	R—OH	R—OH	R—OH	R—OH	-	_
R —OCOB u^t	_	_	s <u></u> 17	R—OH	_	_
R—OBoc	R—OH	R—OH	R—OH	R—OH	-	R—OH
R—OCbz	R—OH	R—OH	R—OH	R—OH	R—OH	_
R—OFmoc	R—OH	R—OH	_	R—OH	_	_

Benzylic ether protecting groups

- benzyl ethers are formed under Williamson ether conditions
- simple benzyl etehrs are best cleaved by hydrogenolysis
- *p*-methyxybenzyl (PMB) ethers can be cleaved by oxidation with ceric amminium nitrate (CAN)

Acetals and Ketals

 formaldehyde acetals include methoxymethyl (MOM) and (2-methoxyethoxy)methyl (MEM) ethers

 tetrahydropyranyl ethers are easily formed, but have the disadvantage that a new chiral center is formed

Protection of 1,2- and 1,3-diols

cyclic ketals based on \bullet Me₂C(OMe)₂ acetone (acetonides) TSOH HO are widely used to (15.56)protect diols H₂SO₄, H₂O THE acetonides are much more readily formed from *cis*-1,2-OH OH cyclohexanediols Me₂CO, H₂SO₄ (15.57)than from the *trans* HO" ΌH isomers, as HO OH illustrated by the OH acetonides of OH .O___OH Me₂CO, H₂SO₄ glucose (15.57) and (15.58)galactose (15.58) HO OH OH

Table 15.8: Stability of protecting groups toward various reagents

Conditions→	Aqueous	Aqueous	TFA	Lewis	Strong	Metal	Fluoride	Hydrogen,	Hydride	Oxidation
Group↓	acid	base	1171	acid	base	base alkyls anion catalyst	reductant	OMdution		
—OR				а						
—OCH ₂ Ar				a				b		c
—OTr			d	а				<u>b</u>		
—OCOR	e	f			g				h	
—OCbz	e	f				h		<u>b</u>	h	
—OFmoc	e	f			i	h		<u>b</u>	h	
—OBoc	e	f	k	а		h			h	
—OSiR ₃	е	f				1	m			
OMOM	e				a					
-OMEM	e				a					
—OTHP	e									
—OSEM							n			

Where no indication is given, one may assume that the group is generally stable under the conditions specified.

- a. Susceptible to strong Lewis acids (BBr₃, TiCl₄, etc.)
- b. Susceptible to hydrogenolysis, especially over Pd
- c. Electron-rich benzyl ethers can be cleabed by oxidation with reagents such as CAN and DDQ
- d. Usually used with trifluoroacetic anhydride
- e. Susceptible to acid-catalyzed hydrolysis or alcoholysis
- f. Susceptible to base-promoted hydrolysis or alcoholysis
- g. Only esters that have an α hydrogen; generally a problematic side reaction in reactions of ester enolates
- h. Reduced by complex metal hydrides (LiBH₄, LiAlH₄, etc.); not generally susceptible to reduction by NaBH₄
- i. Cleaved by Grignard reagents, alkyllithiums, etc.
- j. Cleaved by bases, including tertiary amines; mechanism is E1cb
- k. Isobutylene is formed in the E1 elimination of the tert-butyl group
- 1. Cleaved by alkyllithiums, but not by Grignard reagents
- m. Ease of cleavage is slowed by increased steric bulk of the groups on silicon
- n. Silyl fluoride and ethylene are formed in this fragmentation by the E1cb or E2 mechanism

The use of protecting groups in steps of Wiesner's synthesis of 13-desoxydelphonine involving construction of the A ring

Relative stabilities of silyl ether protecting groups

Silyl ether	Introduction	In Acid	In Base
RÑ OSiMe ₃ (RÑ OTMS)	Me ₃ SiCl, imidazole, DMF	1	1
RÑ OSiEt₃ (RÑ OTES)	Et ₃ SiCl, imidazole, DMF	64	10-100
RÑ OSiMe ₂ Bu ^t RÑ OTBS	Bu ^t SiMe ₂ Cl, imidazole, DMF Bu ^t SiMe ₂ OTf, 2,6-lutidine, CH ₂ Cl ₂	2×10 ⁴	2×10^{4}
RÑ OSi(Pr ⁱ) ₃ RÑ OTIPS	(<i>i</i> -Pr) ₃ SiCl, imidazole, DMF (<i>i</i> -Pr) ₃ SiOTf, 2,6-lutidine, CH ₂ Cl ₂	7×10 ⁵	1×10 ⁵
RÑ OSi(Ph) ₂ Bu ^t RÑ OTBDPS	<i>t</i> -Bu(Ph) ₂ SiCl, imidazole, DMF	2×10 ⁴	5×10 ⁶

Deprotection of silyl ethers with fluoride

tert-Butyldimethylsilyl (TBDMS) ethers resist hydrolysis, but can be cleaved with fluoride anion. TBDMS ethers of primary alcohols are cleaved most rapidly.

Sequence from Hashimoto's synthesis of the zaragozic acids

Reaction synopsis

Protection of Alcohols

Alkyl ethers

formation: RX, base; R=Me, PhCH₂, *p*-MeOC₆H₄CH₂; etc. cleavage: BBr₃, CH₂Cl₂; H₂, Pd-C (allyl, benzyl); DDQ, CAN (PMB ethers); HCO₂H (trityl ethers)

Silyl ethers

formation: R₃SiX, EtN(*i*-Pr)₂; X=Cl, OTf

cleavage: TBAF, THF; etc.

Acetals/ketals

formation: ROCH₂-Cl, base; R=Me, Me(OCH₂CH₂)₂, DHP, TsOH; etc. cleavage: H_3O^+ ; TiCl₄, CH₂Cl₂, etc.

Carboxylic esters

formation: Ac₂O, Py; Me₃COCl, py; PhCOCl, KOH, H₂O; etc.

cleavage: K₂CO₃, MeOH; NaOH, H₂O, THF; NH₃, H₂O; etc.

 $LiBH_4$, Et_2O ; $LiAlH_4$, Et_2O ; etc.

Mixed carbonate esters

formation: Boc₂O, Py; CbzCl, Py, etc. cleavage: TFA (Boc); H₂Pd-C (Cbz); etc.

Protection of aldehydes and ketones

Formation of ketals is often complicated by formation of enol ethers

Entropic factors in ketal formation

The ΔS_{react} for the formation of ketals from open-chain alcohols is negative; the ΔS_{react} with diols is approximately zero. Formation of cyclic ketals is entropy-favored over formation of open-chain ketals

Relative rates for hydrolysis of cyclic ketals by 0.003 M HCl in dioxanewater (70:30)

ketal	rate	ketal	rate	ketal	rate
	1		13.0	Me	8.02
	30.6		172	Me O O	259
	2.01		16.5	Me O O	23.0
	0.888		7.65	Me O O	11.3
	0.335		2.67		3.28

Ketal formation: relative rates

The least hindered ketone carbonyl group reacts first

Saturated ketones react faster than α , β -unsaturated ketones

Ketal formation in α , β unsaturated ketones is usually accompanied by double bond migration where possible

Relative rate constants (L mol⁻¹ s⁻¹) for the acidcatalyzed hydrolysis of 1,3-dioxolane and its derivatives at 25°C

Dithioketals

Dithioketals are formed by Lewis acid-catalyzed condensation of thiols (or dithiols) with ketones

> Hydrolysis of dithioketals can be accomplished with mercury halides, or by oxidation and subsequent hydrolysis

Reaction synopses: Protection of aldehydes and ketones

Acetals and ketals

- formation: MeOH, TsOH, PhH, Δ ; HO(CH₂)₂OH, TsOH, PhH, Δ ; etc.
- cleavage: H_2SO_4 , H_2O , THF; $(CO_2H)_2$, H_2O ; etc.

Dithioacetals and dithioketals

- formation: $HS(CH_2)_3SH$, BF_3 ; etc.
- cleavage: HgCl₂, CaCO₃; HgCl₂, CdCO₃; NBS, H₂O; MeI, MeCN-H₂O; etc.

Reaction synopses: Protection of carboxylic acids

Esters

- formation: CH₂N₂, Et₂O (R'=Me); R'OH, DCC; Me₂C=CH₂, H₂SO₄ (R=Bu^t); etc.
- formation: MeOH, TsOH, PhH, Δ ; HO(CH₂)₂OH, TsOH, PhH, Δ ; etc.
- cleavage: H_2SO_4 , H_2O , THF; $(CO_2H)_2$, H_2O ; etc.
- cleavage: K₂CO₃, MeOH; TFA (R'=Bu^t); Et₂NH (R'=Fm); dimedone, Pd(OAc)₂ (R'=allyl); LiAlH₄, Et₂O; H₂, Pd-C (R'=allyl, benzyl); etc.

1,3-oxazolidines

- formation: 1) (COCl)₂, CH_2CI_2 ; 2) $HOCH_2CMe_2NH_2$; etc.
- cleavage: HCl, H₂O; etc.

Table 15.12

Carbamate protecting groups for amines

Protected amine	Acronym	Representative conditions for incorporation and removal
	Boc	On: $(Boc)_2O$, NaOH, H ₂ O, 25; C Off: 3 M HCl, EtOAc; etc.
Ph O R	Cbz, or Z	<i>On:</i> Cbz-Cl, Na ₂ CO ₃ , H ₂ O <i>Off:</i> H ₂ , Pd-C
O O H H R	Fmoc	<i>On:</i> Fmoc-Cl, NaHCO ₃ , dioxane-H ₂ O <i>Off</i> :piperidine, DMF; etc.
Cl₃C O N R	Troc	On: Troc-Cl, py Off: Zn, THF, H_2O (pH 4.2); etc.
Me ₃ SiO HR	Teoc	<i>On:</i> Teoc-O-succinimide, NaHCO ₃ , dioxane-H ₂ O <i>Off:</i> TBAF, KF, MeCN
N [−] R H	Aloc	<i>On:</i> H ₂ C=CHCH ₂ OCOCl, py <i>Off:</i> (Ph ₃ P) ₄ Pd, dimedone, THF

Reaction synopses: Protection of amines

Amides

- formation: RCOCl, (RCO)₂O; etc.
- cleavage: HCl, H_2O , Δ ; KOH, H_2O -EtOH, Δ ; etc.; acylases, buffer

Carbamates

- formation: ROCOCI, base (R=*t*-Bu, PhCH₂, etc.)
- cleavage: HCl, H₂O; KOH, EtOH; etc.; TFA (R=*t*-Bu); H₂, Pd-C (R=PhCH₂); etc.

Phthalimides

- formation: phthalic anhydride, $CHCl_3$, Δ ; etc.
- cleavage: H_2NNH_2 , EtOH, 25°C; KOH, H_2O , EtOH, Δ ; etc.

Protection of alkenes

Protection by addition to the π bond, followed by deprotection by an elimination reaction addition of bromine/reductive elimination epoxidation/deoxyg enation hydroboration/dehy droboration **Diels-Alder** cycloaddition/ cycloreversion

Protection of alkynes

Dicobalt octacarbonyl reacts with the alkyne to give an organometallic complex without the alkyne π bonds.

The alkyne is regenerated after the reaction by oxidation of the organometallic complex

Reaction synopses: Protection of alkenes

Halogen and halogen-like adducts

vicinal diols and acetonides

Reaction synopses: Protection of alkynes

