Equations - Mechanics

Kinematics

Linear
$s=s_{0}+v_{0} t+1 / 2 a t^{2}$
$\mathrm{v}_{\mathrm{f}}=\mathrm{v}_{\mathrm{o}}+\mathrm{at}$
$v_{f}{ }^{2}=v_{0}{ }^{2}+2 a d$
$d($ range $)=v_{0}{ }^{2} \sin (2 \theta) / g$
$h_{\text {max }}=\sin ^{2} \theta v_{0}{ }^{2} / 2 g$
Tang velocity
Centripetal accel
Tang accel
Force/work
$\mathrm{F}=\mathrm{ma}=\mathrm{Gm} \mathrm{m}_{2} / \mathrm{r}^{2}$
$\mathrm{p}=\mathrm{vm}=\mathrm{Ft}$
$\mathrm{J}=\mathrm{Ft}=\Delta \mathrm{p}$
$\mathrm{W}=\mathrm{Fd}=\Delta \mathrm{E}$
$\mathrm{E}=1 / 2 \mathrm{mv}^{2}=1 / 2 \mathrm{kx}{ }^{2}=\mathrm{mgh}=\mathrm{Fd}=1 / 2 \mathrm{p}^{2} / \mathrm{m}$
$\mathrm{P}=\mathrm{E} / \mathrm{t}=\mathrm{Fv}$
$\mathrm{F}_{\mathrm{g}}=\mathrm{Gm} \mathrm{m}_{1} \mathrm{~m}_{2} / \mathrm{r}^{2}$
$\left[\mathrm{~V}_{\mathrm{f} 1}=\mathrm{V}_{\mathrm{i} 1}\left(\mathrm{~m}_{1}-\mathrm{m}_{2}\right) /\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right)\right.$
$V_{\text {term }}=\mathrm{V}(2 \mathrm{mg} / \mathrm{C} \rho \mathrm{A})$
$\mathrm{F}=\mathrm{ma}=\mathrm{Gm}_{1} \mathrm{~m}_{2} / \mathrm{r}^{2}$
$\mathrm{p}=\mathrm{vm}=\mathrm{Ft}$
$J=F t=\Delta p$
$\mathrm{W}=\mathrm{Fd}=\Delta \mathrm{E}$
Rotational
$\theta=\theta_{0}+\omega_{0} t+1 / 2 \alpha t^{2}$
$\omega_{\mathrm{f}}=\omega_{0}+\alpha \mathrm{t}$
$\omega_{f}^{2}=\omega_{0}^{2}+2 \alpha \theta$
$\alpha=\Delta \omega / \mathrm{t}$
$v_{t}=\omega r$
$a_{c}=v_{t}^{2} / r=\omega^{2} r$
$a_{t}=\alpha r$
$\tau=r F \sin \theta=l \alpha$
$L=l \omega=r p \quad$ [only around fixed axis or axis of symmetry]
$\Delta \mathrm{L}=\mathrm{r} \Delta \mathrm{p}=\tau \mathrm{t}=\mathrm{Fsr}$
$=\tau \theta$
$=\tau \theta, 1 / 2 \mid \omega^{2}$
$=\tau \theta \mathrm{t}=\tau \omega$
$F_{\text {drag }}=1 / 2 C \rho A v^{2}$
$\mathrm{v}_{\mathrm{f} 2}=\mathrm{v}_{\mathrm{i} 1}\left(2 \mathrm{~m}_{1}\right) /\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right) \quad 2$ obj collision, w obj 2 at rest $]$
$\mathrm{T}=2 \pi \sqrt{ }(\mathrm{r} / \mathrm{g})$ (orbital period)

Moment of inertia of various objects

Object	Center		Edge/End		
Thin Rod	1/12 ML ${ }^{2}$		1/3 ML ${ }^{2}$		
Plane/slab	$1 / 12 \mathrm{Ma}^{2}$		$1 / 3 \mathrm{Ma}^{2}$		
Cylinder/solid	$1 / 2 \mathrm{MR}^{2}$	(hoop) MR^{2}			
Sphere/solid	2/5MR ${ }^{2}$	(hollow) 2/3			
General	cMR ${ }^{2}$				
Rolling Downhill v_{cm}	$\mathrm{v}_{\mathrm{cm}}=\mathrm{V} 2 \mathrm{gh} /(1+\mathrm{c})$		$\mathrm{a}_{\mathrm{cm}}=\mathrm{g} \sin \theta /(1+\mathrm{c})$		
Parallel Axis Theorem	em $\quad \mathrm{I}=\mathrm{I}_{\mathrm{cm}}+\mathrm{M}$	Md ${ }^{2}$			
$\mathrm{M}=$ Mass $\quad \mathrm{R}=$ Radius	dius $\mathrm{L}=$ Length	$a=$ area	$d=$ distance	I = moment of inertia	cm - center mass

SHM

$\mathrm{f}=1 / \mathrm{T}=(1 / 2 \pi) \sqrt{k / m}$	$\mathrm{~T}=2 \pi \sqrt{m / k}$	
$\omega=\mathrm{d} \phi / \mathrm{dt}=2 \pi \mathrm{f}=2 \pi / \mathrm{T}$	$\phi=\omega \mathrm{t}+\phi_{0}$	$\Delta \phi=\omega \mathrm{t}$
$\mathrm{x}(\mathrm{t})=\mathrm{A} \cos (2 \pi \mathrm{t} / \mathrm{T})=\mathrm{A} \cos \left(\omega \mathrm{t}+\phi_{0}\right)=\mathrm{A} \cos (2 \pi \mathrm{ft})$	$\mu=\frac{T}{v^{2}}$	
$\mathrm{v}(\mathrm{t})=\mathrm{dx} / \mathrm{dt}=-\omega \mathrm{A} \sin \left(\omega \mathrm{t}+\phi_{0}\right)=-\mathrm{v}_{\max } \sin (2 \pi \mathrm{t} / \mathrm{T})=-\mathrm{v}_{\max } \sin (2 \pi \mathrm{ft})$	$\mathrm{v}=\sqrt{\frac{T}{\mu}}$	
$\mathrm{a}(\mathrm{t})=\mathrm{d}_{2} \mathrm{x} / \mathrm{dt}^{2}=-\omega^{2} \mathrm{~A} \cos \left(\omega \mathrm{t}+\phi_{0}\right)$	$\mathrm{a}_{\mathrm{x}}=-\omega^{2} \mathrm{x}=-\mathrm{k} / \mathrm{m} \mathrm{x}$	
$\mathrm{u}=\mathrm{Ae} \mathrm{e}^{-\mathrm{v} / \mathrm{vo}_{0}}$		

Legend

$\mathrm{s}, \mathrm{r}, \mathrm{d}$ or $\mathrm{h}=$ distance or radius or height	θ, Φ = angle	A = area
$v=$ velocity	ω = angular velocity	$f=$ frequency
$\mathrm{a}=$ acceleration	α = angular acceleration	$\mathrm{g}=$ acceleration of gravity
$\mathrm{at}_{\mathrm{t}}=$ tangential acceleration	$\mathrm{a}_{\mathrm{c}}=$ centripetal acceleration	$\mathrm{G}=$ gravitational constant
F = force	$\tau=$ torque	$\mathrm{T}=$ period; tension (N)
Q, q = charge (C)	$\lambda=$ charge/length	η = charge/area
$\mathrm{E}=$ Energy; electric field (J; N/C or V/m)	W = work (J)	$\Phi=$ electric flux (Vm or $\mathrm{Nm}^{2} / \mathrm{C}$)
$\mathrm{U}=$ potential energy	K = Kinetic Energy (${ }^{\text {) }}$	$\mathrm{P}=$ power (W; J/s)
$\mathrm{J}=$ Joules (Nm or $\mathrm{kg} \mathrm{m}{ }^{2} / \mathrm{s}^{2}$)	$\mathrm{u}_{\mathrm{E}}=$ elec energy density $\left(\mathrm{J} / \mathrm{m}^{3}\right)$	$\rho=$ charge density; $\left(Q / m^{3}\right)$
$\mu=$ linear density (kg / m); permeability Const ($4 \pi \times 10^{-7} \mathrm{Tm} / \mathrm{A}$)		
$\varepsilon=$ permittivity const ($8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{Nm}^{2}$)	$\mathrm{K}=1 / 2 \pi \varepsilon_{0}\left(8.99 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}\right)$	$\kappa=$ dielectric constant
$\mathrm{C}=$ capacitance (F)/Coulomb (C)	$\mathrm{V}=$ voltage or electrical pot. (V)	$\mathrm{p}=$ dipole moment (Cm or D)

Identities

$$
x=\cos \theta \quad y=\sin \theta \quad \theta=\tan ^{-1} y / x
$$

$\tan \theta=\sin \theta / \cos \theta$
$\sin 2 \theta=2 \sin \theta \cos \theta \quad p=s q$

Other
$\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Constants
$\varepsilon=8.55 \times 10^{-12} \mathrm{C}^{2} / \mathrm{Nm}^{2} \quad \mathrm{~K}=1 / 2 \pi \varepsilon=8.99 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}$
$\mathrm{G}=6.67 \times 10^{-11} \mathrm{~N} \quad$ (q) $\mathrm{e}^{-}=1.6 \times 10^{-19} \mathrm{C}(\mathrm{m})=9.11 \times 10^{-31} \mathrm{~kg} \quad(\mathrm{~m}) \mathrm{p}^{+}=1.67 \times 10^{-27} \mathrm{~kg}$

