Equations - P-Chem

Kinetics \& Electrochemistry

Electrochemical cells, potentials

$$
\begin{array}{ll}
\Delta \mathrm{G}=-\mathrm{nFE} & \Delta \mathrm{G}^{o}=-\mathrm{nFE} \\
\Delta_{r} G=\Delta_{r} G^{o}+R T \ln \prod_{i}\left[C_{i}\right]^{i} ; & n \text { is number of electrons xferred in equation } \\
E=E^{o}-\frac{R T}{n F} \ln Q \quad \text { (Nernst Equation) } & \Delta_{r} G=\Delta_{r} G^{o}+R T \ln \prod_{i}\left[C_{i}\right]^{i} \\
E=E^{o}-\frac{R T}{n F} \ln \prod_{i}\left[C_{i}\right]^{i} & @ \mathrm{ln} K \quad \text { (n is \#moles e in std half cell rxn] } \\
E^{o}=E_{\text {reduction }}^{o}+E_{\text {oxidation }}^{o} & \\
w_{\text {electrical }}=\Delta G=-\Delta H\left(1-\frac{T \Delta S}{\Delta H}\right)=-\mathrm{nEF} & \\
d w\left(\varphi_{2}-\varphi_{1}\right) d Q & \mathrm{dQ}=\mathrm{zFdn} \\
\frac{n}{v}=\frac{I t}{F}=\frac{C}{F} & \\
\Delta S^{o}=-\left(\frac{\delta \Delta G^{o}}{\delta T}\right)_{p}=n F\left(\frac{\delta \Delta E^{o}}{\delta T}\right)_{p} & \text { (} \varphi \text { is half cell potential })
\end{array}
$$

Kinetics

Energy of Activation
Units of rate order

$$
k=A e^{-E_{a} / R T} \quad\left(\mathrm{k} \text { is reaction rate) }:: \quad k_{2}\left(T_{2}\right)=k_{1}\left(T_{1}\right) e^{\frac{-E_{a}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)}\right.
$$ $\mathrm{mol}^{(1-0)} \mathrm{dm}^{(-3+30)} \mathrm{s}^{-1} \quad$ where $\mathrm{o}=$ order of $r x n$

rate $=v=\frac{1}{c_{i}} \frac{d[P]}{d t}=\mathrm{k}[\mathrm{A}]^{\alpha}[\mathrm{B}]^{\beta} \ldots \quad c_{i}$ is coefficient in stoic. Eq. | overall order $=\alpha+\beta+\ldots$ $\alpha=\frac{\ln \left(\frac{v_{1}}{v_{2}}\right)}{\ln \left(\frac{[A]_{1}}{[A]_{2}}\right)}$
eg $4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \|$ rate $=-\frac{1}{4} \frac{d\left[N O_{2}\right]}{d t}=-\frac{d\left[O_{2}\right]}{d t}=\frac{1}{2} \frac{d\left[\mathrm{~N}_{2} O_{5}\right]}{d t}$

Rxn Order	Rate Law	Integrated Rate law	Linear plot	Slope of plot	Half-life
Zero	Rate $=\mathrm{k}$	$[\mathrm{A}]_{\mathrm{t}}=-\mathrm{kt}+[\mathrm{A}]_{0}$	$[\mathrm{~A}] \mathrm{vs} \mathrm{t}$	-k	$\frac{[\mathrm{A}]_{0}}{2 k}$
First	Rate $=\mathrm{k}[\mathrm{A}]$	$\ln [\mathrm{A}]_{\mathrm{t}}=-\mathrm{kt}+\ln [\mathrm{A}]_{0}$	$\ln [\mathrm{~A}]$ vs t	-k	$\frac{\ln 2}{k}$
Second	Rate $=\mathrm{k}[\mathrm{A}]^{2}$	$\frac{1}{[A]_{t}}=k t+\frac{1}{[A]_{0}}$	$\frac{1}{[A]_{t}} v s t$	+k	$\frac{1}{k[A]_{0}}$
nth $(n>1)$	Rate $=\mathrm{k}[\mathrm{A}]^{\mathrm{n}}$	$\frac{1}{(n-1)[A]_{t}^{n-1}}=k t+\frac{1}{(n-1)[A]_{0}^{n-1}}$	$\frac{1}{(n-1)[A]_{t}^{n-1}} v s t$	+k	$\frac{\left(2^{n-1}-1\right)}{k(n-1)[A]_{0}^{n-1}}$

eg $\mathrm{v}=-\frac{d[A]}{d t}=$ rate (above) therefore for $2^{\text {nd }}$ order equation
$-\frac{d[A]}{d t}=\mathrm{k}[\mathrm{A}]^{2} \rightarrow-\frac{d[A]}{[A]^{2}}=k d t \rightarrow-\int_{[A]_{0}}^{[A]_{t}} \frac{d[A]}{[A]^{2}}=\int_{0}^{t} k d t \rightarrow \frac{1}{[A]_{t}}-\frac{1}{[A]_{0}}=k t \rightarrow \frac{1}{[A]_{t}}=\frac{1}{[A]_{0}}+k t$

Constants

$$
\begin{aligned}
\mathrm{R} & =\text { Gas constant }=\text { Nak }\left(8.31446 \mathrm{~J} / \mathrm{Kmol} \text { or Pa } \mathrm{m}^{3} / \mathrm{K} \mathrm{~mol}\right)=0.0831445\left(\mathrm{dm}^{3} \mathrm{bar} / \mathrm{K} \mathrm{~mol}\right) \\
& =\left(0.0820574 \mathrm{dm}^{3} \mathrm{~atm} / \mathrm{K} \mathrm{~mol}\right)=\left(62.364 \mathrm{dm}^{3} \mathrm{Torr} / \mathrm{K} \mathrm{~mol}\right)=(1.98721 \mathrm{cal} / \mathrm{Kol})
\end{aligned}
$$

C_{s} water $=4.184\left(\frac{\mathrm{~J}}{\mathrm{gK}}\right)=1 \frac{\mathrm{cal}}{\mathrm{gK}} \quad ; \quad \mathrm{C}_{\mathrm{m}}$ water $=75.4\left(\frac{\mathrm{~J}}{\mathrm{~mol} \mathrm{~K}}\right) ; \mathrm{k}=$ Boltzmann's constant ($\left.1.38065 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)$
atm = $1.01325 \mathrm{bar}=101325 \mathrm{~Pa}=760$ torr ; bar $=1.0 \times 10^{5} \mathrm{~Pa} \quad$ torr $=\mathrm{mmHg}=133.322 \mathrm{~Pa}$
F= Faraday's constant $=96,485 \mathrm{C} / \mathrm{mol}=\mathrm{N}_{\mathrm{A}} \times \mathrm{e}^{-}$charge

Legend

d = distance, Collision diam	A = area, Helmholtz free energy	$\mathrm{p}=$ pressure ($\mathrm{N} / \mathrm{m}^{2}$)
$\mathrm{V}=$ volume	$\mathrm{V}_{\mathrm{m}}=$ molar volume (V/n)	$V_{m}^{0}=$ molar vol of ideal gas
H = Enthalpy (J)	$\mathrm{G}=\mathrm{Gibbs}$ free energy	A $=$ Helmholtz free energy
$\mathrm{U}=$ Internal energy	w = work (J)	$\mathrm{q}=$ heat energy (J)
$\mathrm{M}=$ molar mass ($\mathrm{Kg} / \mathrm{mol}$)	F = force ($\mathrm{N} ; \mathrm{Kg} \mathrm{m} / \mathrm{s}^{2}$)	$\mathrm{n}=$ moles (mol)
W = number of microstates	$\mathrm{N}=$ total molecules	$\mathrm{N}_{\mathrm{A}}=$ Avogadro's number
$N=$ number density (N / V)	$\mathrm{v}=$ electrons/molecule, rxn rate	$\mathrm{J}=$ Joules (Nm or $\mathrm{kg} \mathrm{m}{ }^{2} / \mathrm{s}^{2}$)
$\pi_{\mathrm{T}}=$ Internal pressure ($\frac{\mathrm{J}}{\mathrm{m}^{3}}$)	$\alpha=$ expansion coefficient	$K_{T}=$ compressibility coefficient
$\mathrm{H}^{\circ}=$ Std Enthalpy (J)	$\mathrm{G}^{\circ}=$ Std Gibbs free energy	$A^{\circ}=$ Std Helmholtz free energy
$\mathrm{C}_{\mathrm{V}, \mathrm{s}}=\mathrm{C}_{\mathrm{s}}=$ Specific Heat Capacity ($\frac{J}{\langle\text { unit }\rangle K}$)	$\mathrm{C}_{\mathrm{V}, \mathrm{m}}=\mathrm{C}_{\mathrm{m}}=$ Molar Heat Capacity, V	$\mathrm{C}_{\mathrm{v}, \mathrm{m}}=$ Molar Heat Cap, const p ,
Q = Rxn quotient	$\mathrm{R}=$ Thermodynamic Equilibrium const ($=\mathrm{Q}_{\text {Equil }}$)	$C=$ Columb $\left(6.24 \times 10^{18} \mathrm{e}^{-}\right)$
$\mathrm{R}=$ Gas constant $=$ N $\mathrm{A} \mathrm{k}(8.31446 \mathrm{~J} / \mathrm{Kmol})$	$\mathrm{k}=$ Boltzmann's constant (1.3806	$\left.5 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)$
$\mathrm{E}=$ Energy; Cell potential (V)	$\varphi=$ half cell potential (V)	z is charge xferred (electron $=-1$)

