Equations - P-Chem

Entropy/Free Energy

Internal Energy

$A=C \& B=C$, then $A=B$
$\mathrm{U}_{\text {univ }}=\mathrm{U}_{\text {sys }}+\mathrm{U}_{\text {surr }}=$ constant
$0^{\text {th }}$ Law of Thermodynamics
$1^{\text {st }}$ Law of Thermodynamics (energy cannot be created/destroyed)

Entropy

$$
\begin{aligned}
& \mathrm{S}=\mathrm{k} \ln W \quad \text { Boltzmann entropy formula } \\
& \mathrm{dS}=\frac{\delta Q}{T} \\
& \varepsilon=-\frac{w_{c y c l e}}{q_{1}}=1-\frac{\left|q_{3}\right|}{\left|q_{1}\right|} \quad \text { Carnot cycle efficiency where } \mathrm{q}_{\text {cycle }}=\mathrm{q}_{1}+\mathrm{q}_{3} \text { and }-\mathrm{q}_{\text {cycle }}=\mathrm{w}_{\text {cycle }} \\
& \varepsilon=1-\frac{T_{C}}{T_{H}}<1=-\frac{\left|q_{3}\right|}{\left|q_{1}\right|}=\frac{T_{C}}{T_{H}} \quad ; \quad \frac{\left|q_{3}\right|}{T_{C}}+\frac{\left|q_{1}\right|}{T_{H}}=0 \\
& \oint \frac{đ q_{\text {reversible }}}{T}=0 \quad ; \quad \mathrm{dS}=\frac{\text { đ } q_{\text {reversible }}}{T} \\
& \begin{array}{l}
\text { Reversible }
\end{array} \\
& \Delta \mathrm{S}=\Delta \mathrm{S}_{\text {surr }} ; \Delta \mathrm{S}_{\text {surr }}=-\frac{-p_{f} \Delta V}{T} \quad ; \Delta \mathrm{S}_{\mathrm{tot}}=\Delta \mathrm{S}_{\mathrm{surr}}+\Delta \mathrm{S}
\end{aligned}
$$

Reversible Isothermal expansion isochoric heating isobaric heating

$$
\Delta \mathrm{S}=\frac{q_{r e v}}{T}=\mathrm{nR} \ln \left(\frac{V_{f}}{V_{i}}\right)=\quad n C_{V, m} \ln \frac{T_{f}}{T_{i}}=\quad n C_{p, m} \ln \frac{T_{f}}{T_{i}}
$$

Phase transition

$$
\begin{array}{lll}
\Delta \mathrm{S}_{\text {vaporization }}=\frac{q_{\text {reversible }}}{T_{b}}=\frac{\Delta H_{\text {vaporization }}}{T_{b}} & \left(\mathrm{~T}_{\mathrm{b}}=\text { boiling temperature }\right) & \text { Trouton's rule } \sim=10.5 \mathrm{R} \\
\Delta \mathrm{~S}_{\text {fusion }}=\frac{q_{\text {reversible }}}{T_{f}}=\frac{\Delta H_{\text {fusion }}}{T_{f}} & \left(\mathrm{~T}_{\mathrm{f}}=\text { freezing temperature }\right) \\
\text { General phase transition } & \Delta_{\mathrm{trs}} \mathrm{~S}=\frac{\Delta_{\text {trs } H}}{T_{t r s}} &
\end{array}
$$

Combined Entropy Equation

$$
\begin{aligned}
& \Delta \mathrm{S}_{\mathrm{m}}=\mathrm{C}_{\mathrm{p}, \mathrm{~m}}(\mathrm{~s}) \ln \left(\frac{T_{f u s}}{T_{i}}\right)+\Delta_{\mathrm{fus}} \mathrm{H} / \mathrm{T}_{\text {fus }}+\mathrm{C}_{\mathrm{p}, \mathrm{~m}}(\mathrm{I}) \ln \left(\frac{T_{b}}{T_{f u s}}\right)+\Delta_{\text {vap }} \mathrm{H} / \mathrm{T}_{\mathrm{b}}+\mathrm{C}_{\mathrm{p}, \mathrm{~m}}(\mathrm{~g}) \ln \left(\frac{T^{\prime}}{T_{b}}\right)-\mathrm{nR} \ln \left(\frac{p^{\prime}}{p_{b}}\right) \\
& \mathrm{S}_{\mathrm{m}}\left(\mathrm{~T}^{\prime}\right)=\mathrm{S}_{\mathrm{m}}\left(\mathrm{~T}_{\mathrm{i}}\right)+\Delta \mathrm{S}_{\mathrm{m}} \\
& \mathrm{~S}=\mathrm{n} \Delta \mathrm{~S}_{\mathrm{m}}=\mathrm{k} \ln W \\
& \mathrm{C}_{\mathrm{p}, \mathrm{~m}}=\mathrm{aT}^{3} \text { Debye Law at very low temperatures }
\end{aligned}
$$

Thermochemistry

$$
\begin{aligned}
& \Delta H^{\Theta}\left(\mathrm{T}_{2}\right)=\Delta H^{\Theta}\left(\mathrm{T}_{1}\right)+\int_{T_{1}}^{T_{2}} \Delta_{r} C_{p}^{\Theta} d T \\
& \Delta_{r} C_{p}^{\Theta}=\underset{\text { Products }}{\sum v} C_{p, m}^{\Theta}-\underset{\substack{\text { Reactans }}}{\sum} \underset{p, m}{\Theta} \\
& \Delta_{r} U^{\Theta}=\Delta_{r} H^{\Theta}-\left(\Delta_{g}\right) R T \quad \text { for Perfect Gases } \\
& G(\mathrm{~T}, \mathrm{P})=\mathrm{G}^{\circ}\left(\mathrm{T}, \mathrm{P}^{\circ}\right)+\mathrm{nRT} \ln \left(\frac{p}{p^{o}}\right) \quad \text { Gibbs free energy at nonstandard pressure } \\
& Q=\Pi_{J} a_{J}^{v_{J}} \quad ; \mathrm{K}=\left(\Pi_{J} a_{J}^{v_{J}}\right)_{\text {equilibrium }} \quad \text { [Q rxn quotient; } \mathrm{K} \text { equilibrium constant] } \\
& \Delta \mathrm{G}=\Delta \mathrm{G}^{\circ}+\mathrm{RT} \ln \mathrm{Q} \quad \text { Relationship between } \Delta \mathrm{G} \text { and } \mathrm{Q} \\
& \Delta \mathrm{G}^{\circ}=-\mathrm{RT} \operatorname{lnK} \quad \text { Relationship between } \Delta \mathrm{G} \text { and } \mathrm{K} \text { (equilibrium) } \\
& \mu_{\mathrm{i}}=\left(\frac{\delta G}{\delta n_{i}}\right)_{p, T, n_{k}<>n_{i}} \quad \text { Definition of chemical potential } \\
& \Delta_{\text {solv }} G_{0}=\frac{z_{i}^{2} e^{2} N_{A}}{8 \pi \varepsilon_{0} r}\left(\frac{1}{\varepsilon_{0} r}\right) \quad z_{i} \text { charge of ion; e elementary charge; r radius; } \varepsilon_{r} \text { permittivity radius }
\end{aligned}
$$

$$
\begin{array}{lr}
\mathrm{A}=\mathrm{U}-\mathrm{TS} & \text { Helmho } \\
\mathrm{G}=\mathrm{H}-\mathrm{TS}=\mathrm{U}+\mathrm{pV}-\mathrm{TS} & \text { Gibb's } \mathrm{F} \\
\mathrm{dw} \mathrm{~m}_{\max }=\mathrm{dU}-\mathrm{TdS}=\mathrm{dA} & \\
\left(\frac{\delta G}{\delta p}\right)_{T}=\left(\frac{\delta H}{\delta p}\right)_{S}=V ; & \left(\frac{\delta A}{\delta V}\right)_{T}=\left(\frac{\delta U}{\delta V}\right)_{S}=-p \\
\left(\frac{\delta U}{\delta S}\right)_{V}=\left(\frac{\delta H}{\delta S}\right)_{p}=T ; & \left(\frac{\delta A}{\delta T}\right)_{V}=\left(\frac{\delta G}{\delta T}\right)_{p}=-S
\end{array}
$$

Helmholtz Free Energy
Gibb's Free Energy

Maxwell's Relations

$$
\begin{aligned}
-\left(\frac{\delta p}{\delta S}\right)_{V} & =\left(\frac{\delta T}{\delta V}\right)_{S} ; & \left(\frac{\delta S}{\delta V}\right)_{T} & =\left(\frac{\delta P}{\delta T}\right)_{V} \\
\left(\frac{\delta V}{\delta S}\right)_{p} & =\left(\frac{\delta T}{\delta p}\right)_{S} ; & -\left(\frac{\delta S}{\delta p}\right)_{T} & =\left(\frac{\delta V}{\delta T}\right)_{p}
\end{aligned}
$$

State Relationships

$$
\begin{array}{ll}
\Delta \mathrm{U}=\mathrm{q}+\mathrm{w} & \mathrm{dU}=\mathrm{TdS}-\mathrm{pdV}=\left(\frac{\delta U}{\delta S}\right)_{V} d S+\left(\frac{\delta U}{\delta V}\right)_{S} d V \\
\mathrm{H}=\mathrm{U}+\mathrm{pV}=\mathrm{U}+\mathrm{nRT} & \mathrm{dH}=\mathrm{TdS}+\mathrm{Vdp}=\left(\frac{\delta H}{\delta S}\right)_{p} d S+\left(\frac{\delta H}{\delta p}\right)_{S} d p \\
\mathrm{~A}=\mathrm{U}-\mathrm{TS} & \mathrm{dA}=-\mathrm{SdT}-\mathrm{pdV}=\left(\frac{\delta A}{\delta T}\right)_{V} d T+\left(\frac{\delta A}{\delta V}\right)_{T} d V \\
\mathrm{G}=\mathrm{H}-\mathrm{TS} & \mathrm{dG}=-\mathrm{SdT}+\mathrm{Vdp}=\left(\frac{\delta G}{\delta T}\right)_{p} d T+\left(\frac{\delta G}{\delta p}\right)_{T} d p
\end{array}
$$

Criteria of spontaneous change $\quad \mathrm{dA}_{\mathrm{T}, \mathrm{V}}<=0 \quad \mathrm{dG}_{\mathrm{T}, \mathrm{p}}<=0$

$\boldsymbol{\Delta H}$	$\boldsymbol{\Delta S}$	$\mathbf{- T \Delta S}$	$\boldsymbol{\Delta G}$	Spontaneity
+	-	+	+	Nonspontaneous
-	+	-	-	Spontaneous
-	-	+	+ or -	Low Temp: Spontaneous High Temp: Nonspontaneous
+	+	-	+ or -	Low Temp: Nonspontaneous High Temp: Spontaneous

Chemical potential

$$
\begin{aligned}
& \mathrm{d} \mu=\mathrm{dG}_{\mathrm{m}}=-\mathrm{S}_{\mathrm{m}} \mathrm{~d} \mathrm{~T}+\mathrm{V}_{\mathrm{m}} \mathrm{dp}=\left(\frac{d \mu}{d T}\right)_{\mathrm{p}} \mathrm{~d} \mathrm{~T}+\left(\frac{d \mu}{d p}\right)_{\mathrm{T}} \mathrm{dp} \\
& -\mathrm{S}_{\mathrm{m}}
\end{aligned}=\left(\frac{d \mu}{d T}\right)_{\mathrm{p}} ; \quad \mathrm{V}_{\mathrm{m}}=\left(\frac{d \mu}{d p}\right)_{\mathrm{T}} \quad \begin{aligned}
& \Delta \mathrm{G}_{\mathrm{m}}=\int_{p_{i}}^{p_{f}} V_{m} d P \\
& \sim \mathrm{~V}_{\mathrm{m}} \Delta \mathrm{p} \quad \text { solids/liquids } \\
&=\mathrm{RT} \ln \left(\frac{p_{f}}{p_{i}}\right) \quad \text { perfect gases } \\
& \mathrm{G}_{\mathrm{m}}(\mathrm{p})=G_{m}^{o}+R T \ln \left(\frac{p}{p_{o}}\right) \\
& \frac{\Delta \mathrm{G}\left(\mathrm{~T}_{2}\right)}{\mathrm{T}_{2}}=\frac{\Delta \mathrm{G}\left(\mathrm{~T}_{1}\right)}{\mathrm{T}_{1}}+\Delta \mathrm{H}\left(\mathrm{~T}_{1}\right)\left(\frac{1}{\mathrm{~T}_{2}}-\frac{1}{\mathrm{~T}_{1}}\right) \quad:: \quad \Delta \mathrm{G}\left(\mathrm{~T}_{2}\right)=\Delta \mathrm{G}\left(\mathrm{~T}_{1}\right) \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}+\Delta \mathrm{H}\left(\mathrm{~T}_{1}\right)\left(1-\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right) \\
& \mathrm{C}_{\mathrm{p}, \mathrm{~m}}=\mathrm{C}_{\mathrm{V}, \mathrm{~m}}+\mathrm{TV} \mathrm{~V}_{\mathrm{m}}\left(\frac{\alpha^{2}}{\kappa_{T}}\right)
\end{aligned}
$$

Phases and transitions

$$
\begin{array}{lll}
\mathrm{F}=3-\mathrm{p} & \text { (} \mathrm{F} \text { deg of freedom; } \mathrm{p}=\mathrm{phases)} & \text { Single substance } \\
\mathrm{F}=\mathrm{C}-\mathrm{p}+2 & \text { (} \mathrm{C} \# \text { components) } & \text { Generalized to more than one component su } \\
\frac{d p}{d T}=\frac{\Delta_{t r s} S_{m}}{\Delta_{t r s} V_{m}} & \text { Clapeyron equation } \\
\left(\frac{\delta p}{\delta T}\right)_{f u s i o n}=\frac{\Delta S_{\text {fusion }}}{\Delta V_{\text {fusion }}} & \text { solid-liquid coexistence curve } \\
\left(\frac{\delta p}{\delta T}\right)_{v a p}=\frac{p \Delta H_{v a p}}{R T^{2}}-\left[\operatorname{lntegrated~form]~} \ln \frac{p_{f}}{p_{i}}=-\frac{\Delta H_{v a p}}{R} \times\left(\frac{1}{\mathrm{~T}_{\mathrm{f}}}-\frac{1}{\mathrm{~T}_{\mathrm{i}}}\right) \quad\right. \text { Claisen-Clapeyron equation } \\
T_{n}=\left(\frac{1}{T_{0}}-\frac{R \ln \left(\frac{p_{n}}{p_{0}}\right)}{\Delta H_{v a p}}\right)^{-1} & \text { subscripts: } n \text {-new, o-original } & \text { Change of boiling point w/ change pressure }
\end{array}
$$

Isothermal process, constant temp:	$\Delta T=\Delta U=0 ;$	$q=-w$
Isochoric process, constant volume:	$\Delta U=q ;$	$w=0$
Isobaric process, constant pressure:	$\mathrm{w}=-\mathrm{p} \Delta \mathrm{V}$	
Adiabatic process, no heat exchange:	$\Delta \mathrm{U}=\mathrm{w} ;$	$\mathrm{q}=0$

Constants

$$
\begin{aligned}
\mathrm{R} & =\text { Gas constant }=\text { NAk }\left(8.31446 \mathrm{~J} / \mathrm{Kmol} \text { or } \mathrm{Pa} \mathrm{~m} \mathrm{~m}^{3} / \mathrm{K} \mathrm{~mol}\right)=0.0831445\left(\mathrm{dm}^{3} \mathrm{bar} / \mathrm{K} \mathrm{~mol}\right) \\
& =\left(0.0820574 \mathrm{dm}^{3} \mathrm{~atm} / \mathrm{K} \mathrm{~mol}\right)=\left(62.364 \mathrm{dm}^{3} \mathrm{Torr} / \mathrm{K} \mathrm{~mol}\right)=(1.98721 \mathrm{cal} / \mathrm{Kol})
\end{aligned}
$$

C_{s} water $=4.184\left(\frac{\mathrm{~J}}{\mathrm{gK}}\right)=1 \frac{\mathrm{cal}}{\mathrm{gK}} \quad ; \quad \mathrm{C}_{\mathrm{m}}$ water $=75.4\left(\frac{\mathrm{~J}}{\mathrm{~mol} \mathrm{~K}}\right) ; \mathrm{k}=$ Boltzmann's constant $\left(1.38065 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)$
$\operatorname{atm}=1.01325 \mathrm{bar}=101325 \mathrm{~Pa}=760$ torr ; bar $=1.0 \times 10^{5} \mathrm{~Pa} \quad$ torr $=\mathrm{mmHg}=133.322 \mathrm{~Pa}$

Legend

d = distance, Collision diam	A = area, Helmholtz free energy	$\mathrm{p}=$ pressure ($\mathrm{N} / \mathrm{m}^{2}$)
V = volume	$\mathrm{V}_{\mathrm{m}}=$ molar volume (V/n)	$V_{m}^{0}=$ molar vol of ideal gas
H = Enthalpy (J)	$\mathrm{G}=\mathrm{Gibbs}$ free energy	A = Helmholtz free energy
$\mathrm{U}=$ Internal energy	w = work (J)	$\mathrm{q}=$ heat energy (J)
$\mathrm{M}=$ molar mass ($\mathrm{Kg} / \mathrm{mol}$)	$\mathrm{F}=$ force ($\mathrm{N} ; \mathrm{Kg} \mathrm{m} / \mathrm{s}^{2}$)	$\mathrm{n}=$ moles (mol)
$W=$ number of microstates	$\mathrm{N}=$ total molecules	$\mathrm{N}_{\mathrm{A}}=$ Avogadro's number
$N=$ number density (N / V)	E = Energy; electric field (J; N/C or	V / m) J = Joules (Nm or $\mathrm{kg} \mathrm{m}{ }^{2} / \mathrm{s}^{2}$)
$\pi_{T}=$ Internal pressure ($\frac{\mathrm{J}}{\mathrm{m}^{3}}$)	$\alpha=$ expansion coefficient	$K_{T}=$ compressibility coefficient
$\mathrm{H}^{\circ}=$ Std Enthalpy (J)	$\mathrm{G}^{\circ}=$ Std Gibbs free energy	$A^{\circ}=$ Std Helmholtz free energy
$\mathrm{C}_{\mathrm{V}, \mathrm{s}}=\mathrm{C}_{\mathrm{s}}=$ Specific Heat Capacity ($\frac{J}{\langle\text { unit }>K}$)	$\mathrm{C}_{\mathrm{v}, \mathrm{m}}=\mathrm{C}_{\mathrm{m}}=$ Molar Heat Capacity, V	$\mathrm{C}_{\mathrm{v}, \mathrm{m}}=$ Molar Heat Cap, const p
$\mathrm{R}=$ Gas constant $=$ Nak (8.31446 $\mathrm{J} / \mathrm{Kmol}$)	$\mathrm{k}=$ Boltzmann's constant (1.38065	$\left.5 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)$

