Spectroscopy Equations

Theory

$c = \lambda v$; $\lambda = c/v$; $\overline{v} = 1/v$;	Frequency, wavelength, wave number		
$\lambda = h/mv;$			
$E = hv = hc/\lambda =$	Energy quanta		
$T = \frac{P_{Solution}}{P_{Solute}} \approx \frac{P}{P_0}$	Transmittance (P is power)		
$A=Log(\frac{P_{Solution}}{P_{Solute}}) \approx Log(\frac{P}{P_{0}})$	Absorbance		
$A=Log\left(\frac{P}{P_0}\right)=\epsilon bc$	arepsilon is consolidated constants, b = path length (cm), c=conc (M/L)		
$-\frac{dP_x}{P_x} = \frac{dS}{S}$	Change in power vs change in cross-sectional area (S * dx)		
dS = adn nλ = d sin(θ)	Capture area is proportional (a) to number of particles grating: n=order, d slit distance, θ max ang to maximum, λ is wavelength		

Refraction/Reflection

$\lambda_{material} = \lambda_{vacuum} / n n = c/v$	Snell's law			
%loss = $I_r/I_0 = \frac{n_2 - n_1}{n_2 + n_1}$	Reflective loss			
$n_1 sin \theta_1 = n_2 sin \theta_2$	Refraction			
Critical angle $\theta_{critical} = \sin^{-1}(n_2/n_1)$)			
<u>Legend</u> $\theta, \Phi = angle$ v = frequency h = Planck constant(6.626x10-34 j/H	Iz	A = Absorption ω = angular frequency λ = charge/wavelength	T = transmittance I = Intensity (W/m ²) n = index of refraction	
$\frac{Identities}{x = \cos\theta \ y = \sin\theta \ \theta = \tan^{-1} y/x}$ $\tan\theta = \sin\theta / \cos\theta$ $\sin 2\theta = 2\sin\theta \cos\theta$	×	p=sq		
<u>Other</u>	<u>Constat</u> ε = 8.55	<u>nts</u> x10 ⁻¹² C²/Nm² K=1/2πε=8.99x10 ⁹ Nr	m^2/C^2 I ₀ = 1.0x10 ⁻¹² W/m ²	

$$\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$