Chromatography Equations

Plate Theory

$p+q=1$	
$\mathrm{F}_{(r, n)}=\frac{n!}{(n-r)!r!} p^{r} q^{n-r}$	Fraction of solute in the $\mathrm{r}^{\text {th }}$ of n plates.
$\mathrm{F}_{(r, n)}=\frac{(n p)^{r} e^{-n p}}{r!} p^{r} q^{n-r}=\frac{(n p)^{r} e^{-n p}}{\sqrt{2 \pi r}}\left(\frac{e}{r}\right)^{r}$	
$\mathrm{r}_{\text {max }}=\mathrm{np}$	$r_{\text {max }}$ is the peak, aka the plate with max solute fraction
$F_{\left(r_{\text {max }}, n\right)}=\frac{1}{\sqrt{2 \pi r_{\text {max }}}}$	
$\mathrm{Q}_{(\mathrm{N}, \mathrm{n})}=F_{(\mathrm{N}, \mathrm{n})} m=\frac{m}{\sqrt{2 \pi N}}$	Where $r_{\text {max }}=N$, then $Q_{(N . n)}$ is the quantity of material in the Nth plate
$\mathrm{S}_{\text {max }}=\mathrm{Q}_{(\mathrm{N} . \mathrm{n})} \mathrm{N} / \mathrm{t}_{\mathrm{r}}$	$S_{\text {max }}$ is the rate of solute escape in mole/unit time
$S_{\text {max }}=\frac{N m}{\sqrt{2 N}} \frac{1}{2}$	
$N=\frac{2 \pi\left(S_{\text {max }}\right)^{2} t_{r}{ }^{2}}{}$	
$N=\frac{m^{2}}{}$	Number of plates
$\mathrm{m}=\mathrm{s} \mathrm{kht}_{\mathrm{w}}$	moles, k is proportionality constant, s is shape constant : $1 / 2$ for triangular
$S_{\text {max }} \propto h$ or $S_{\text {max }}=k h$	$S_{\text {max }}$ (rate of solute escape) proportional to height of peak
$\mathrm{N}=\frac{8 \pi t_{r}{ }^{2}}{t^{2}}$	N relates to column efficiency
$\mathrm{N}=16\left(\frac{t_{R}}{W_{b}}\right)^{2} .$	Efficiency (For gaussian peak shape)
$N_{\text {eff }}=5.54\left(\frac{t_{R}^{\prime}}{W_{h}}\right)^{2}$	Effective efficiency - N using peak width at half height
$A_{s}=B C / A C$	Peak Asymmetry - @ 10% peak h - AC is distance, from front to ctr, CB back to center
$\mathrm{TF}=\mathrm{AB} / 2 \mathrm{AC}=\frac{A_{5 \% h}+B_{5 \% h}}{2 A_{5 \% h}}$	Tailing Factor - measured at 5\% h
$\sigma=0.3035 \mathrm{~h}$	h is peak height
$\mathrm{N}=\left(\frac{t_{r}}{\sigma}\right)^{2}=\frac{2 \pi\left(S_{\max }\right)^{2} t_{R}^{2}}{m^{2}}$	m is \# moles
HETP	
$\mathrm{H}=\mathrm{L} / \mathrm{N}$	plate height is column length divided by \# plates
$\mathrm{H}=\frac{L \sigma^{2}}{t_{r}{ }^{2}}=A+\frac{B}{\mu}+\mathrm{C} \mu$	
$\mu_{o p t}=\sqrt{\frac{B}{C}}$	Optimal mobile phase velocity
$\mathrm{PC}=1+\frac{\sqrt{N}}{4} \ln \left(\frac{t_{R}}{t_{M}}\right)$	Peak Capacity - \# peaks can be fitted between t_{M} and $\mathrm{t}_{\mathrm{R}} \mathrm{w} / 4 \sigma$ gap
$\mathrm{H}=\mathrm{A}+\mathrm{B} / \mathrm{u}+\mathrm{Cu}$	Van Deemter equation, terms relate to Eddy diff, longit diff,

$I=100\left[n+(N-n)\left(\frac{\log \left(t_{R}\right)_{u}-\log \left(t_{R}\right)_{n}}{\log \left(t_{R}\right)_{N}-\log \left(t_{R}\right)_{n}}\right)\right] \quad$ Kovats Index. Where $\mathrm{I} / 100=\sim \#$ of carbons
$\bar{v}=$ velocity of the retained solute u is velocity of the mobile phase
$t_{0}=t_{M}=$ Dead time or time of unretained solute
$\mathrm{t}_{\mathrm{r}}{ }^{\prime}=\mathrm{t}_{\mathrm{r}}-\mathrm{t}_{0} \quad$ Adjusted retention time is retention time minus dead time
$\mathrm{V}_{\mathrm{r}}{ }^{\prime}=\mathrm{V}_{\mathrm{r}}-\mathrm{V}_{0}$ Adjusted
$\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{S}}+\mathrm{V}_{0}$
Total volume
$\bar{v}=\mu \frac{\text { moles of solute in mobile phase }}{\text { total number of moles }}=\mu \frac{c_{M} V_{M}}{c_{M} V_{M}+c_{S} V_{S}}=\mu \frac{1}{1+\frac{c_{S} V_{S}}{c_{M} V_{M}}}=u \frac{1}{1+\frac{K V_{S}}{V_{M}}}=\mu \frac{1}{1+k_{A}^{\prime}}$
$\bar{v}_{A}=\mu \frac{1}{1+k_{A}^{\prime}} \quad$ velocity for retained solute A
$k^{\prime}=\left(\frac{u}{\bar{v}}-1\right) \quad$ Retention factor or capacity
$k_{A}^{\prime}=\frac{K_{A} V_{M}}{V_{M}}=\frac{t_{R}-t_{M}}{t_{M}}=\frac{t_{R}^{\prime}}{t_{M}} \quad$ Retention factor (capacity) for solute A
$\mathrm{K}=\frac{V_{M}}{V_{S}}\left(\frac{u}{\bar{v}}-1\right)=\frac{V_{M}}{V_{S}} k^{\prime}=\beta k^{\prime}=\frac{c_{S}}{c_{M}} \quad$ Partition Factor / Distribution coefficient
$\alpha=\frac{K_{B}}{K_{A}}=\frac{k_{B}^{\prime}}{k_{A}^{\prime}}=\frac{t_{R}^{\prime}(B)}{t_{R}^{\prime}(A)} \quad$ separation factor or selectivity
$R_{s}=2 \frac{t_{R 2}-t_{R 1}}{w_{b 1}+w_{b 2}} \quad$ Resolution (of peaks), $\mathrm{w} / \mathrm{w}_{\mathrm{b}}$ being width at base
$R_{S}=\frac{\sqrt{N}}{4} \frac{\alpha-1}{\alpha} \frac{k}{k+1} \quad$ Efficiency * Selectivity* Retention factor
$N=16 R_{S}^{2}\left(\frac{\alpha}{\alpha-1}\right)^{2}\left(\frac{1+k_{B}^{\prime}}{k_{B}^{\prime}}\right)^{2} \quad$ Efficiency from Rs, selectivity, and retention factor
Auc $=1.06$ * $\mathrm{h} * \mathrm{w}_{0.5} \quad$ Area under a gaussian curve
$\beta=\frac{V_{M}}{V_{S}}$
$\mathrm{V}_{\mathrm{S}}=\mathrm{L} \pi r_{c}^{2} L$
Vol of $S P$ is $L \pi r_{c}^{2} L$ of column, where r_{c} is radius of column
$\mathrm{K}=\frac{V_{R}-V_{0}}{V_{S}}$
$V_{R}=V_{0}+K V_{S}$
$P^{\prime}=P_{1}^{\prime} C_{1}+P_{2}^{\prime} C_{2} \quad \mathrm{P}$ is polarity index, C is molar concentration
$\frac{k_{2}^{\prime}}{k_{1}^{\prime}}=10^{\frac{P_{1}^{\prime}-P_{2}^{\prime}}{2}}$
Changing Eluent polarity index affect, Normal phase
$\frac{k_{2}^{\prime}}{k_{1}^{\prime}}=10^{\frac{P_{2}^{\prime}-P_{1}^{\prime}}{2}}$
Changing Eluent polarity index affect, Reverse phase

